Glass Blowing
Click Here ::: https://blltly.com/2tkJag
Founded in 1991, Seattle Glassblowing Studio provides public access to glassblowing through art and experiences. The onsite hot shop offers the visitors opportunity to see molten glass handcrafted by professional artists. The art gallery showcases gifts, jewelry, and fine art with a focus on Northwest makers. A full range of events and hands-on experiences are available to visitors and groups who wish to try their hands at glassblowing
Glassblowing is a glassforming technique that involves inflating molten glass into a bubble (or parison) with the aid of a blowpipe (or blow tube). A person who blows glass is called a glassblower, glassmith, or gaffer. A lampworker (often also called a glassblower or glassworker) manipulates glass with the use of a torch on a smaller scale, such as in producing precision laboratory glassware out of borosilicate glass.
As a novel glass forming technique created in the middle of the 1st century BC, glassblowing exploited a working property of glass that was previously unknown to glassworkers; inflation, which is the expansion of a molten blob of glass by introducing a small amount of air into it. That is based on the liquid structure of glass where the atoms are held together by strong chemical bonds in a disordered and random network,[1][2][3] therefore molten glass is viscous enough to be blown and gradually hardens as it loses heat.[4]
To increase the stiffness of the molten glass, which in turn makes the process of blowing easier, there was a subtle change in the composition of glass. With reference to their studies of the ancient glass assemblages from Sepphoris of Israel, Fischer and McCray[5] postulated that the concentration of natron, which acts as flux in glass, is slightly lower in blown vessels than those manufactured by casting. Lower concentration of natron would have allowed the glass to be stiffer for blowing.
During blowing, thinner layers of glass cool faster than thicker ones and become more viscous than the thicker layers. That allows production of blown glass with uniform thickness instead of causing blow-through of the thinned layers.
This method held a pre-eminent position in glassforming ever since its introduction in the middle of the 1st century BC until the late 19th century, and is still widely used as a glassforming technique, especially for artistic purposes. The process of free-blowing involves the blowing of short puffs of air into a molten portion of glass called a \"gather\" which has been spooled at one end of the blowpipe. This has the effect of forming an elastic skin on the interior of the glass blob that matches the exterior skin caused by the removal of heat from the furnace. The glassworker can then quickly inflate the molten glass to a coherent blob and work it into a desired shape.[4][6][7]
An outstanding example of the free-blowing technique is the Portland Vase, which is a cameo manufactured during the Roman period. An experiment was carried out by Gudenrath and Whitehouse[9] with the aim of re-creating the Portland Vase. A full amount of blue glass required for the body of the vase was gathered on the end of the blowpipe and was subsequently dipped into a pot of hot white glass. Inflation occurred when the glassworker blew the molten glass into a sphere which was then stretched or elongated into a vase with a layer of white glass overlying the blue body.
Mold-blowing was an alternative glassblowing method that came after the invention of free-blowing, during the first part of the second quarter of the 1st century AD.[10][11] A glob of molten glass is placed on the end of the blowpipe, and is then inflated into a wooden or metal carved mold. In that way, the shape and the texture of the bubble of glass is determined by the design on the interior of the mold rather than the skill of the glassworker.[4]
Two types of mold, namely single-piece molds and multi-piece molds, are frequently used to produce mold-blown vessels. The former allows the finished glass object to be removed in one movement by pulling it upwards from the single-piece mold and is largely employed to produce tableware and utilitarian vessels for storage and transportation.[12] Whereas the latter is made in multi-paneled mold segments that join together, thus permitting the development of more sophisticated surface modeling, texture and design.
The Roman leaf beaker which is now on display in the J. Paul Getty Museum was blown in a three-part mold decorated with the foliage relief frieze of four vertical plants.[13] Meanwhile, Taylor and Hill[14] tried to reproduce mold-blown vessels by using three-part molds made of different materials. The result suggested that metal molds, in particular bronze, are more effective in producing high-relief design on glass than plaster or wooden molds.
The development of the mold-blowing technique has enabled the speedy production of glass objects in large quantity, thus encouraging the mass production and widespread distribution of glass objects.[11][15]
The transformation of raw materials into glass takes place at around 1,320 C (2,400 F);[16] the glass emits enough heat to appear almost white hot. The glass is then left to \"fine out\" (allowing the bubbles to rise out of the mass), and then the working temperature is reduced in the furnace to around 1,090 C (2,000 F). At this stage, the glass appears to be a bright orange color. Though most glassblowing is done between 870 and 1,040 C (1,600 and 1,900 F), \"soda-lime\" glass remains somewhat plastic and workable at as low as 730 C (1,350 F). Annealing is usually done between 371 and 482 C (700 and 900 F).
Glassblowing involves three furnaces. The first, which contains a crucible of molten glass, is simply referred to as \"the furnace\". The second is called the \"glory hole\", and is used to reheat a piece in between steps of working with it. The final furnace is called the \"lehr\" or \"annealer\", and is used to slowly cool the glass, over a period of a few hours to a few days, depending on the size of the pieces. This keeps the glass from cracking or shattering due to thermal stress. Historically, all three furnaces were contained in one structure, with a set of progressively cooler chambers for each of the three purposes.
The major tools used by a glassblower are the blowpipe (or blow tube), punty (or punty rod, pontil, or mandrel), bench, marver, blocks, jacks, paddles, tweezers, newspaper pads, and a variety of shears.
The tip of the blowpipe is first preheated; then dipped in the molten glass in the furnace. The molten glass is \"gathered\" onto the end of the blowpipe in much the same way that viscous honey is picked up on a honey dipper. This glass is then rolled on the marver, which was traditionally a flat slab of marble, but today is more commonly a fairly thick flat sheet of steel. This process, called \"marvering\",[17] forms a cool skin on the exterior of the molten glass blob, and shapes it. Then air is blown into the pipe, creating a bubble. Next, the glassworker can gather more glass over that bubble to create a larger piece. Once a piece has been blown to its approximate final size, the bottom is finalized. Then, the molten glass is attached to a stainless steel or iron rod called a \"punty\" for shaping and transferring the hollow piece from the blowpipe to provide an opening and to finalize the top.
The bench is a glassblower's workstation; it includes places for the glassblower to sit, for the handheld tools, and two rails that the pipe or punty rides on while the blower works with the piece.
Jacks are tools shaped somewhat like large tweezers with two blades, which are used for forming shape later in the creation of a piece.Paddles are flat pieces of wood or graphite used for creating flat spots such as a bottom. Tweezers are used to pick out details or to pull on the glass. There are two important types of shears, straight shears and diamond shears. Straight shears are essentially bulky scissors, used for making linear cuts. Diamond shears have blades that form a diamond shape when partially open. These are used for cutting off masses of glass.
There are many ways to apply patterns and color to blown glass, including rolling molten glass in powdered color or larger pieces of colored glass called \"frit\". Complex patterns with great detail can be created through the use of cane (rods of colored glass) and murrine (rods cut in cross-sections to reveal patterns). These pieces of color can be arranged in a pattern on a flat surface, and then \"picked up\" by rolling a bubble of molten glass over them. One of the most exacting and complicated caneworking techniques is \"reticello\", which involves creating two bubbles from cane, each twisted in a different direction and then combining them and blowing out the final form.
Glassblowing was invented by Syrian craftsmen from Sidon and Babylon between 27 BC and 14 AD. The ancient Romans copied the technique consisting of blowing air into molten glass with a blowpipe making it into a bubble.[18][19][20][21]
Hence, tube blowing not only represents the initial attempts of experimentation by glassworkers at blowing glass, it is also a revolutionary step that induced a change in conception and a deep understanding of glass.[22] Such inventions swiftly eclipsed all other traditional methods, such as casting and core-forming, in working glass.
Evidence of glass blowing comes even earlier from Indian subcontinent in the form of Indo-Pacific beads which uses glass blowing to make cavity before being subjected to tube drawn technique for bead making dated more than 2500 BP.[23][24] Beads are made by attaching molten glass gather to the end of a blowpipe, a bubble is then blown into the gather.[25]
The invention of glassblowing coincided with the establishment of the Roman Empire in the 1st century BC, which enhanced the spread and dominance of this new technology.[4][26] Glassblowing was greatly supported by the Roman government (although Roman citizens could not be \"in trade\", in particular under the reign of Augustus), and glass was being blown in many areas of the Roman world.[11][27] On the eastern borders of the Empire, the first large glass workshops were set up by the Phoenicians in the birthplace of glassblowing in contemporary Lebanon and Israel as well as in the neighbouring province of Cyprus.[12] 59ce067264
https://www.elijah.ch/forum/fragen-antworten/renal-physiology-mosby-physiology-monograph-se